CULTURES ET INDUSTRIES LITHIQUES en milieu loessique
(AMIENS, DIRECTION DES ANTIQUITÉS DE PICARDIE, 9-11 décembre 1986)

ACTES DU COLLOQUE INTERNATIONAL
organisé par Alain TUFFREAU
avec la collaboration de Jean-Claude BLANCHET, Jean-Pierre FAGNART et Jean SOMMÉ

REVUE ARCHÉOLOGIQUE DE PICARDIE
Trimestriel - N° 1-2 (numéro spécial) 1988
CHRONOSTRATIGRAPHY AND ECOLOGY OF TWO MIDDLE AND UPPER PLEISTOCENE SITES (Jersey, Channel Islands)

by Paul CALLOW *

RESUME
Les sites du paléolithique moyen ancien de La Cotte à la Chèvre et de La Cotte de St Brelade ont été particulièrement sensibles aux changements de l'environnement, du fait de leur position côtière sur ce qui est maintenant une île du plateau continental. Le premier site est une petite grotte marine, creusée lors d'une transgression de 16 m. Les traces de cet événement n'ont pas été retrouvées dans le deuxième site, mais des sédiments d'âge saalien, très riches d'un point de vue archéologique, ont été découverts en talusraie durant la transgression de 8 m du sous-stade isotopique 5e des carottes océaniques et sont coiffés de trois sols suivis par des dépôts épais du Weichselien. Un complexe interglaciaire plus ancien a été daté de 238 000 ± 35 000 ans et appartient donc au stade isotopique 7. La géologie, la flore et la faune se combinent pour documenter une longue séquence de fluctuations dans l'environnement. Des matériaux éoliens ou locaux (principalement des lias, et des sables provenant de l'altération des granites de la roche mère) furent déposés dans un système de ravins profonds, et y alternent d'une manière très clairement liée aux événements climatiques.

L'occupation de ces deux sites semble avoir pris place durant la même période chronologique. Si l'on émet l'hypothèse de l'occupation par un seul groupe humain, La Cotte à la Chèvre aurait permis d'étendre légèrement un territoire économique centré sur le site plus grand et mieux placé de St Brelade qui, si l'on s'en remet à l'observation archéologique, fut un foyer d'activités bien plus important.

La présence humaine dans cette région fut contrôlée directement ou indirectement par le climat. Il semble y avoir eu des périodes durant lesquelles le niveau marin permettait l'accès facile de Jersey et où le froid n'était pas d'une sévérité suffisante pour inhiber toute activité. Le paysage semble avoir varié d'une périodicité relativement boisée, rattachée au Cotentin, à un plateau situé dans une plaine côtière à végétation plus ouverte. L'aspect le plus remarquable de Jersey durant le Pliocène est l'événement avec laquelle la dépendance mutuelle de composantes diverses est révélée : le climat, la sédimentation et la formation des sols, les changements du niveau marin et l'érosion marine, la géographie physique, la faune et la flore, la présence humaine et l'économie, les sources de matière première pour la fabrication d'outils et les techniques de travail de la pierre.

ABSTRACT
Thanks to their coastal location on what is now an island on the continental shelf, the two early Middle Palaeolithic sites of La Cotte à la Chèvre and La Cotte de St Brelade are especially sensitive to environmental change. The former is a small sea-cave cut during a +18 m marine transgression. At the latter site no traces of this episode have been found, but the archaeologically very rich sediments of Saalian age were sculpted into a cliff during the +8 m transgression of isotopic stage 5e, and were capped by a triple soil followed by thick Weichselian deposits; an earlier interglacial complex is dated to 238±35 ky, and must be attributed to oxygen isotope stage 7. Geology, flora and fauna combine to document a long sequence of environmental change. The deep ravine system is a natural sediment trap in which wind-transported materials - chiefly sands, and sand formed by decay of the granite bedrock - alternated in a manner clearly linked to climatic change.

The occupation of the two sites appears to cover much the same chronological range. They may be regarded as complementary, in that if they were used by a single human group La Cotte à la Chèvre would have provided a convenient means of slightly extending the catchment of the much larger and better placed St Brelade site, which on archaeological evidence was a far more important focus of activity.

Human presence in the area was controlled directly or indirectly by climate; there appears to have been a "window" within which the sea-level was low enough to permit easy access to Jersey while the cold was not severe as to inhibit activity altogether. The landscape would have varied from, at one extreme, a comparatively wooded peninsula attached to the Cotentin, to a tableland set in a broad coastal plain with more open vegetation. Perhaps the most remarkable aspect of Pleistocene Jersey is the clarity with which the close mutual interdependence between different components is revealed - climate, sedimentation and soil formation, sea-level changes and marine erosion, physical geography, flora and fauna, human presence and economy, supplies of raw material for tool-making and stone-working techniques.

* University of Cambridge Computer Laboratory, 9 Exchange St., Cambridge CB2 3QL, England
INTRODUCTION:

Jersey is now an island measuring 15 by 10 km, and is no more than 21 km from the coast of France (it is the accidents of history rather than geography which have made it a part of the United Kingdom). It lies in the shallow waters of the continental shelf; the connection to the Cotentin peninsula is now today’s sea-level, and to north and south of the island are the broad submerged palaeovalleys of the rivers Ay and Senné (fig. 1). Thus the eustatic fall of sea-level during each of the colder phases of the Pleistocene period had a dramatic effect on the landscape of the area; very moderate increase in the glaciated areas elsewhere in the world sufficed to join Jersey to Normandy, so that what once had been an island became a rocky headland at the tip of a peninsula, while at the maximum extent of the ice-sheets it stood in a broad plain extending at least 100 km to the west with very obvious consequences for the landscape, and for man, of the dramatic climatic changes that characterised the Pleistocene were amplified here by the peculiarities of topography.

Apart from a few isolated finds (Hawkes, 1939; Callow, 1988a), only two Old Stone Age sites are known in Jersey. Both were discovered in the 19th century, and both have been the subject of excavations by the University of Cambridge under the direction of the late Professor C.B.M. McBurney: La Cotte de la Chèvre, a cave in the northwest corner of the island, and La Cotte de St Brélaide, a system of ravines in the southwest. Covering a very similar time-span within the late Middle and Upper Pleistocene they contrast markedly in size and location, almost certainly implying important differences in function, in particular it should be noted that a slight fall in sea-level can have little effect on the site exploitation territory (SET) of the former because of the very close proximity, to the north, of a major flooded valley, the Russel Channel, while dramatically increasing that of La Cotte de St Brélaide (fig. 2). A fall of at least 30 m (implying a considerable climatic deterioration) is required to open up the SET of La Cotte de la Chèvre.

LA COTTE DE ST BRELIADE:

Cutting through a granitic headland is a T-shaped system of ravines some 60 m deep and with a total length of about 90 m (fig. 4). Today the sea enters the stem of the T at high tide and has removed the Pleistocene deposits from this part of the site. At the time of discovery the sediments in the arms of the T (the north and south ravines) survived to 30 m above high tide. Extensive deposits of Weichselian age were removed in the course of the late 19th and early 20th centuries (Nicolle and Sinel, 1911 and 1912; Keith and Knowles, 1912; Maret, 1916), yielding a rich Mousterian industry, fauna and remains of Neanderthal man (two individuals). In the 1950s, investigations at a lower level demonstrated that much older strata were preserved (Burdo, 1960). These were excavated by McBurney from 1961-78, and again by Callow in 1982. Substantial revisions of interpretation have taken place since the appearance of an interim report (McBurney and Callow, 1971). The results have recently been published in full by Callow and Confrom (1986, with numerous collaborations) as well as in shorter papers (Scott, 1980, on the hunting and butchery of large mammals; Callow, 1986a, on the artefact assemblages). No traces of the +18 m marine transgression identified at La Cotte de la Chèvre are preserved here, though high sea-levels must have been the principal agent in the formation of the ravines themselves. But the earliest artefact assemblage, from layer H (only a few meters below the ETM) line, is identical to that from the top of the beach at La Cotte de la Chèvre - higher in the successions, the notched pieces and denticulates lose numerical importance to side-scrapers and there are marked technological developments. Burned flints from above a forest soil developed on granite sand (fig. 5), based on non-Quartz technology, while a greater technological and typological range occurred later in the succession.

LA COTTE DE LA CHEVRE:

This is a small marine cave 3 m wide and 9 m deep facing almost due north, cut into granite cliffs by a marine transgression at c. +18 m (Maret, 1912; McBurney, 1973; Callow and Confrom, 1986, Appendix C). Its walls are smoothed and the lowest stratigraphic unit consists of rounded boulders embedded in sand (fig. 3). Artefacts are recorded within the upper part of the beach, from the white or grey 'earth' which may be no more than its altered surface, and in the boulders which caps the EXHUMATION. At the site, as well as natural processes, so disturbed the deposits that it is impossible to resolve the archaeological sequence with great precision. However, it is clear that the first industry was overwhelmingly dominated by a very high frequency of well-made notched points, based on non-Quartz technology, while a greater technological and typological range occurred later in the succession.

Eemian transgression, equivalent to oxygen isotope stage 5e (fig. 6). A comparable beach at La Belle Hougue, on the north coast, has yielded a uranium-series age of 121 ky, on calcite (Keen, Harmon and Andrews, 1981). There is no possibility of accommodating this transgression any later in the sequence at La Cotte de St Brélaide. And the TL date confirms the conclusion, reached on stratigraphic grounds, that the previous (first) episode of soil formation must correspond to some point within isotope stage 7, and the intervening loessic deposits broadly to isotope stage 8. The first recorded occupation of the area, after the +18 m transgression, may thus date to stage 8 or even to late stage 9.

The present reading of the environmental sequence is based on several different types of evidence (Table 1). Certain of these, such as microfauna, and waste material, make a contribution in relatively few layers; others, such as pollen, have to be treated with care in interpretation because of unfa-
Fig. 3: Plan and simplified sections of La Cotte à la Chévre, based on McBurney's excavations, especially the 1964 season. Note the presence of well-rounded granite boulders embedded in beach sand in section 77. The 'grey' and 'white' earths were difficult to distinguish; the former seems to have been richer archaeologically and the difference may merely be anthropogenic.

Fig. 4: Aerial view of La Cotte Point from the southwest. The north and east entrances to La Cotte de St Brelade are visible as shadows to left and right of the North Pinnacle. Note the break of slope marking the line of the dead cliff in the bay beyond, in which the mantle of Weichselian 'head' is being eroded by the modern sea - a similar phenomenon to that observed for the Ermann in the site itself (Photo: J.T. Renouf).

Fig. 5: La Cotte de St Brelade: simplified north-south section through the lower part of the deposits in the North Ravine (not to scale). Key: 1. Loessic loam; 2. water-laid silt; 3. granite sand; 4. talus resulting from collapse of cliff 'cliff'; 5. humic deposits (marram soils); 6. marine gravel; 7. fluvial water wash.

Fig. 6: Comparison of La Cotte sequence with the oxygen isotope record of core Y10-30 (courtesy of N.J. Shackleton).

Vavourable conditions. Nevertheless, important cyclical regularities are apparent (fig. 7). Interglacial periods tended to be marked at La Cotte by accumulation and reworking of sand formed by disaggregation of the granite, while periglacial conditions favoured deposition and redeposition of loess (in this case, silt picked up from the Channel bed or its estuaries). The effects of climatic change on sedimentation were not always immediate, nevertheless. Apparently the presence of a reservoir of sediment at high levels within the ravines, and on the summit of the headland, permitted continuing redeposition of this at the onset of a new phase, and whenever there was a severe disturbance of equilibrium - as when the Ermann sea undercut and made available the existing loessic material.

The environmental fluctuations undergone by the area in the course of the Middle and Upper Pleistocene were extreme. One end of the scale is represented by conditions like those of the Flandelier at the arrival of man, with isolated islands covered by deciduous woodland, and alder carr in the low lying and poorly drained areas. Indeed, during the Ermann, finds from La Belle Hougue indicate that Jersey's red deer population, cut off from breeding with animals on the mainland, suffered severe dwarfing. At the other is a steppe-tundra extending across much of what is now the Western Approaches, as evidenced by the pollen and by the presence of Arctic rodents such as Diceromycter torquatus and Micromus. To judge from the present topography of the sea bed, the inter-tidal zone must have been immensely wide. There is no evidence that human occupation took place during the Pliocene under either of these sets of conditions, however. Though the possibility of a visit to La Cotte de St Brelade between two episodes of storm beach is hinted at by a lens containing wood charcoal, there is already evidence of contemporary glaciation. And the whole area seems to have been abandoned by man under conditions of extreme cold, within isotope stage 6 and, even more strikingly, in view of the depth of sediment at this site, during the Upper Palaeolithic. The apparent absence of any Old Stone Age material on the other Channel Islands suggests that a fall of sea-level to perhaps –40 m was accompanied by a sufficient climatic deterioration to render the area unattractive.
One may therefore envisage a "window" of conditions under which Jersey was occupied during the Pleistocene. It had to be accessible from the mainland, without being too unpleasant because of excessive cold (or precipitation, or less storms?). There is hardly any information available about the fauna exploited at the temperate end of this range because the chemistry of the sediments laid down under such conditions does not favour the preservation of bone, but it is probably safe to suppose that it would have included a high proportion of woodland species. As the sea-level for tens of km around Jersey became grassland, however, there was a very rich fauna of steppe herbivores, including mammoth and woolly rhinoceros. And the territory available for exploitation for other resources was greatly increased. Even within the confines of this 'window', therefore, there was scope for radically different economic strategies.

SOME ECONOMIC RESPONSES TO CHANGE

It is possible to identify some of the respects in which the changing character of the Channel Islands area in the course of the climatic fluctuations of the Pleistocene obliged the hominids to adapt their way of life.

1. Flint is not native to Jersey, but was chiefly obtained in the form of pebbles. At the maximum sea-level compatible with occupation, the sea-shore was about 1 km from La Cotée de St Brelade, providing a source of flint. One of the consequences of falling sea-level was a distancing of this resource from the site, as the sea retreated and abandoned beaches were covered by colluvium, loess or soliflucted rubble. In the course of late isotope stage 7 and 6 there was a marked decline in the proportion of flint used, even though it was clearly the preferred material for small tools. Factor analysis of flint technological data shows a succession of three factors through time (fig. 8); each of these may be interpreted as linked to a particular approach to the procurement or use of lithic material.

Leaving aside the first factor, which may be summarised as 'advances in a Middle Palaeolithic style of primary debitage', the other two, combined, reflect very well the shift in raw material abundances. Factor 2 is in effect a response in the direction of strict economy, making the flint go further by working the cores harder, sharpening and modifying tools, etc. Factor 3, which succeeds it, is an alternative, and more extreme, response. In these final visits to the site before it was abandoned to the climatic extreme of isotope stage 6, recourse was had to a curated technology. High quality tools were generally made elsewhere and carried around; whereas at one time even the preliminary decortication of flint pebbles had been carried out at La Cotée de St Brelade, now much of the primary knapping was confined to quartz. Only a quarter of the lithic material, by weight, was flint - the active marine beaches must have been at least 10 km away by then. It is interesting to note, too, that greater reliance on a curated technology would be in keeping with higher mobility associated with a more open landscape than before. On the other hand, the range of activities occurring at La Cotée at this time was apparently greater than occurred at the late Upper Palaeolithic site of La Reina, Spain, where some comparable technological and raw material relationships have been remarked (Straus, Clark, Suarez and Esbert, 1986).

2. Whatever the opportunities for hunting during more temperate conditions, the opening of the landscape to giant herbivores provided the hominids with a magnificent bonus, on account of the character of La Cotée Point. At several places in...
the succession, the very onset of a period of abandonment of the site is marked by a large pile of mammoth and woolly rhinoceros bones. These bear cut marks and show signs of deliberate arrangement; hominids were at least responsible for butchering the animals. (It would have been easiest to clean up the debris after leaving it to decay for a while, so preservation would depend on non-return of the human group). Moreover, such accumulations seem not to have occurred at times when there was no human occupation at all. This appears to rule out the scavenging of animals which had fallen into the ravines by accident, as such accidents should have occurred independent of human presence, resulting in a continuing supply of carcasses. In fact the form of the headland is such that it would have been fairly safe for all but stampeding animals, but these would be very much at risk. The distribution of the heaps through time suggests human agency. La Cotte de St Brelade, at around 150-200 kya, therefore appears to contradict the views of workers such as Binford (1984) who believe that it was only very much later that hunting, as opposed to scavenging, of giant herbivores became possible. It is of some interest that in Brittany (immediately opposite La Cotte) there may have been a similar 'mammoth jump site' at Mont-Dol (Monnier, 1980), during the early Weichselian.

3. When sea-level was relatively high, the area of the SET of La Cotte à la Chèvre which was not overlapped by that of the bigger and richer site would have been small. As the sea retreated, however, the role of the former must eventually have changed, as the area of land visible from the cliffs of the north coast expanded and the hominid economy adapted to the changes. The presence of at least one of the highly characteristic scraper sharpening flakes which occur late in the La Cotte de St Brelade sequence points to continuing use of both sites in parallel; each would have served in the exploitation of a discrete area of the plain around Jersey. It is therefore frustrating that the deposits of La Cotte à la Chèvre should have been so effectively destroyed.

CONCLUSION:

Research at the two sites described here serves to emphasise the importance of relating hominid activity to the landscape in which it takes place. By virtue of their sensitivity to environmental changes, which are amplified by the peculiarities of geography, off-shore islands such as Jersey are of particular archaeological value because of the varying constraints they impose on their occupants under different conditions.

Perhaps one should also stress another implication of the work carried out by practitioners of many disciplines who contributed to the project. Expansion of the investigations over the years ultimately led to an appreciation of hominid behaviour which is very different from that acquired when the input from non-archaeological personnel was smaller. It is no longer possible to contemplate the investigation of sites of such complexity without a very high level of participation and cooperation by a wide range of experts at all stages of the work.

ACKNOWLEDGEMENT:

REFERENCES

